
 
THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL  

TASKS IN EXAMS 

© T. Cherniuk, B. Somriakov, 2025   Молодь і ринок № 5–6 (237–238), 2025 
 

111

 
UDC 004.42:811.111 
DOI: https://doi.org/10.24919/2308-4634.2025.332796 
 

Tetiana Cherniuk, Senior Lecturer of the Foreign Languages Department,  
Petro Mohyla Black Sea National University, Mykolaiv, Ukraine 

ORCID: https://orcid.org/0009-0005-1991-2303 
Bohdan Somriakov, Student of the Faculty of Computer Science,  
Petro Mohyla Black Sea National University, Mykolaiv, Ukraine 

ORCID: https://orcid.org/0009-0003-7045-8586 
 

THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL 
TASKS IN EXAMS 

Exams can be a source of stress for many students, particularly when it comes to solving grammatical tasks. One of the 
main difficulties arises from the natural tendency to approach these tasks in a disorganized way, attempting to juggle multiple 
mental processes at once. Students often find themselves simultaneously analyzing grammar rules, interpreting the meaning of 
sentences, considering the broader context, and even contemplating the emotional tone of the passage. This multitasking can be 
overwhelming, causing errors and incomplete answers as the pressure mounts. 

However, there is an alternative way of thinking that could significantly improve a student's ability to handle such tasks: 
thinking like a computer. In the world of programming, computers process languages using a systematic approach, following 
precise rules to break down complex code into smaller, more manageable parts. Much like how a compiler processes 
programming languages – by separating syntax, semantics, and structure into clear steps – students can apply a similar strategy 
to language exams. By focusing on one aspect at a time and methodically working through the task, they can reduce mental 
overload and improve their accuracy. 

This article draws an analogy between the way computers handle programming languages and how students can benefit 
from adopting a “compiler mindset” when tackling English exams. Through this lens, students will learn how to better organize 
their thought process, break down complex tasks, and avoid the common pitfalls that arise from trying to process too many 
elements at once. By approaching grammatical tasks in a structured, methodical way, students can increase both their 
confidence and performance under exam conditions. 

This article researches the similarities between the functioning of compound languages and the structure of the English 
language and identifies how this knowledge can be applied to effective question answering in an English language exam. The 
findings allow for a better understanding of the patterns of language construction and their use in different contexts. This, in 
turn, contributes to the improvement of language competence and the successful passing of language tests.  

Keywords: grammar; English exams; NLP; BNF; language. 
Fig. 4. Tabl. 2. Ref. 15. 

 
Тетяна Чернюк, старший викладач кафедри іноземних мов 

Чорноморського національного університету імені Петра Могили, Миколаїв, Україна 
ORCID: https://orcid.org/0009-0005-1991-2303 

Богдан Сомряков, студент факультету комп’ютерних наук 
Чорноморського національного університету імені Петра Могили, Миколаїв, Україна 

ORCID: https://orcid.org/0009-0003-7045-8586 
 

МИСЛИТИ ЯК КОМПІЛЯТОР: СИСТЕМНИЙ ПІДХІД ДО ВИРІШЕННЯ ГРАМАТИЧНИХ 
ЗАВДАНЬ НА ІСПИТАХ 

Іспити можуть бути джерелом стресу для багатьох студентів, особливо коли йдеться про вирішення 
граматичних завдань. Основні труднощі виникають через природну тенденцію підходити до цих завдань 
неорганізовано, намагаючись жонглювати кількома розумовими процесами одночасно. Студенти часто водночас 
аналізують граматичні правила, інтерпретують значення речень, розглядають ширший контекст і навіть 
обмірковують емоційний тон уривку. Така багатозадачність може бути непосильною, спричиняючи помилки та 
неповні відповіді, оскільки тиск зростає. 

Однак існує альтернативний спосіб мислення, який може значно покращити здатність учня справлятися з 
такими завданнями: мислення як у комп’ютера. У світі програмування комп’ютери обробляють мови, 
використовуючи системний підхід, дотримуючись точних правил, щоб розбити складний код на менші, більш керовані 
частини. Подібно до того, як компілятор обробляє мови програмування, розділяючи синтаксис, семантику та 
структуру на чіткі кроки, студенти можуть застосувати подібну стратегію до мовних іспитів. Зосереджуючись на 
одному аспекті за раз і методично опрацьовуючи завдання, вони можуть зменшити розумове перевантаження та 
підвищити свою точність. 

У цій статті проводиться аналогія між тим, як комп’ютери працюють з мовами програмування, і тим, як 
студенти можуть отримати користь від прийняття “мислення компілятора” при підготовці до іспитів з 



 
THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL  

TASKS IN EXAMS 

Молодь і ринок № 5–6 (237–238), 2025 
 

112

англійської мови. Під цим кутом зору студенти дізнаються, як краще організувати свій процес мислення, розбивати 
складні завдання на частини та уникати поширених помилок, які виникають при спробі обробити надто багато 
елементів одночасно. Підходячи до граматичних завдань у структурований, методичний спосіб, студенти можуть 
підвищити свою впевненість та покращити результати в умовах іспиту.  

Ключові слова: граматика; іспити з англійської мови; NLP; BNF; мова. 
 

ntroduction. When writing code, it’s impor-
tant to understand what happens behind the 
scenes during the compilation process. The 

compiler transforms the code into machine-readable 
instructions through three distinct stages, each playing a 
crucial role in this transformation: 

Step 1: Lexical Analysis. The first step in the com-
pilation process is lexical analysis. When you save your 
code in a. go file, the compiler’s lexical analyzer breaks 
the code into individual tokens. These tokens are the 
building blocks of the programming language, inclu-
ding keywords (e.g., const), identifiers (e.g., a), literals 
(e.g., 9), and symbols (e.g., =). 

Step 2: Syntax Analysis. The compiler’s parser takes 
the tokens and checks if they form a valid program 
according to the language’s syntax rules. This is where 
the compiler ensures that your code is structured cor-
rectly, with proper nesting, brackets, and semicolons. 

Step 3: Semantic Analysis. After parsing, the com-
piler performs semantic analysis, which involves 
checking the meaning of the code. This is where the 
compiler checks the types of variables, ensures that 
operations are valid, and performs other semantic 
checks. 

When students tackle English exam questions, they 
can benefit from a structured approach similar to the 
way compilers process code. Just as a compiler goes 
through three essential stages to transform code into 
machine-readable instructions, students can apply a 
three-step method to analyze and answer exam ques-
tions effectively. 

Analysis of the latest relevant research and pub-
lications. Recent research and publications on the 
application of Backus-Naur Form (BNF) in English 
language processing and natural language processing 
(NLP), as well as the tools utilized in the development 
of English exams, underscore several key points: 

- A Two-Stage BNF Specification of Natural Lan-
guage. This paper presents a method of using BNF to 
specify natural language in such a way that a relatively 
small grammar of English can express the major 
grammatical constraints of the language and can be 
refined without undue proliferation of the rules. The 
results show that the departures of natural language 
from a context-free language are of a very restricted 
kind. The analysis obtained for sentences of the scien-
tific literature is relevant for information processing [1]. 

- Backus-Naur form (BNF). The article provides an 
overview of Backus-Naur Form (BNF), a widely re-
cognized meta-language used to describe the syntax of 
programming languages. It explains that BNF, named 

after its creators John W. Backus and Peter Naur, serves 
as a formal way to specify which sequences of symbols 
are considered syntactically valid within a program-
ming language. The article emphasizes that while BNF 
effectively outlines the structural rules of a language, it 
does not address the semantics, or the meanings, of 
those valid sequences. It aims to discuss the fundamen-
tal concepts of BNF, examining how it functions as a 
tool for defining the syntax of programming languages 
and its importance in the realm of computer science [2].   

- What is language? Part IV: BNF notation. Syntax 
diagrams. The article is part of a series that examines 
formal languages and their applications, specifically 
focusing on Backus-Naur Form (BNF) notation and its 
extensions. It addresses a gap in previous discussions 
about context-free grammars by providing practical 
examples of how BNF notation can be used to describe 
the syntax of languages [3]. 

- The restriction language for computer grammars 
of natural language. The paper introduces a program-
ming language specifically designed to effectively and 
clearly express the restrictions applicable to natural 
language grammar. This language is built on ten years 
of experience from the N.Y.U. Linguistic String Pro-
ject, which has focused on parsing English sentences. 
The language incorporates practical syntax and routines 
that facilitate computerized natural language analysis, 
and it is currently utilized in the implementation of the 
Linguistic String Parser [4]. 

- A Syntax-Based Analysis of Predication: Linguis-
tic Structures. This article reviews a syntax-based ana-
lysis of predication in language, delving into its under-
lying linguistic structure. The research conducted 
employs analytical methods sourced from literature to 
comprehend sentence construction and the syntactic 
relationships forming predication [5]. 

- A Review of the Studies on the Frequent Admi-
nistrations of English Tests. The aim of this paper is to 
give a review of the studies which have been conducted 
on the role of the frequent administrations of tests. This 
includes studies on the effect of testing frequency on 
students’ scores, anxiety, motivation, preparation, class 
participation, long-term retention of the materials, and 
the effect of the feedback which is given based on 
students’ performance on these frequent tests. It also 
gives a brief summary of different types of test-anxious 
students and models of test anxiety [6]. 

- The language of languages. The article discusses 
the foundational role of grammars in shaping various 
types of languages used in computing, including pro-
gramming languages, query languages, and markup 

I 



 
THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL  

TASKS IN EXAMS 

 Молодь і ринок № 5–6 (237–238), 2025 
 

113

languages. It emphasizes that grammars determine the 
structure of these languages and introduces common 
notations for representing grammars, specifically 
Backus-Naur Form (BNF), Extended Backus-Naur 
Form (EBNF), and regular extensions to BNF [7]. 

The purpose of the research is to examine the simi-
larities between the functioning of compiled languages 
and the structure of the English language, as well as to 
identify how these insights can be applied to effectively 
solve English exam questions. 

Results of the research. BNF stands for Backus 
Naur Form notation. It is a formal method for descri-
bing the syntax of programming language which is 
understood as Backus Naur Formas introduced by John 
Bakus and Peter Naur in 1960. 

For human consumption, a proper notation for 
encoding grammars intended and called Backus Naur 
Form (BNF). Different languages have different de-
scription and rules but the general structure of BNF is 
given below. 
<name> ::= <expansion> 

 
BNF (Backus-Naur Form) Rules Overview [8]: 
1. Every name in Backus-Naur form is surrounded 

by angle brackets, < >, whether it appears on the left- or 
right-hand side of the rule.  

2. An expansion is an expression containing termi-
nal symbols and non-terminal symbols, joined together 
by sequencing and selection.  

3. A terminal symbol may be a literal like (“$” or 
“function”) or a category of literals (like integer).  

4. Simply juxtaposing expressions indicates se-
quencing.  

A vertical bar | indicates choice. 
Let’s examine the following table, which provides 

examples of mathematical expressions and indicates 
whether they are correct as seen in table 1. 

 
№ Expression Correctness 
1 id$ Correct 
2 id+id+id$ Correct 
3 id+$ Wrong 
4 id+(id+id)$ Correct 
5 id+(id+id$ Wrong 
6 id*(id+id)$ Correct 
7 id(id+id$ Wrong 

Table 1  Examples of expressions and their 
correctness 

 
The BNF for the mathematical expressions dis-

played in table 1 is structured as shown below: 
 

<Expression> ::= <Term> | <Expression> "+" <Term> 
<Term> ::= <Factor> | <Term> "*" <Factor> 
<Factor> ::= "id" | "(" <Expression> ")" 

 
Using the BNF, we can construct a table that serves 

as a foundation for the compiler’s parsing process as 
seen in table 2. 

 

Non-terminal 
Input Symbol 

id + * ( ) $ 

E E → TE'   E → TE'   

E'  E'→ +TE'   E' → ε E' → ε 

T T → FT'   T → FT'   

T'  T' → ε T'→ *FT'  T' → ε T' → ε 

F F → id   F → (E)   

Table 2  Parsing table based on the BNF grammar 
 
Table 2 is a parsing table derived from the BNF 

grammar to assist in parsing input strings. It consists of: 
1. Non-terminals: Rows for non-terminal symbols 

(E, E', T, T', F). 
2. Input symbols: Columns for terminal symbols 

(id, +, *, (, ), and $). 
3. Production rules: Cell values indicate applicable 

production rules for each non-terminal and input sym-
bol. 

For instance: 

If the input symbol is id and the parser expects E, 
the rule E → TE' is applied. 

If the input is + and the parser expects E', the rule E' 
→ +TE' is used. 

This table enables the parser to determine which 
production rules to apply, facilitating the construction 
of a predictive parser. 

Figure 1 illustrates how a compiler can utilize the 
table to determine whether a mathematical expression 
is correctly constructed. 



 
THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL  

TASKS IN EXAMS 

Молодь і ринок № 5–6 (237–238), 2025 
 

114

$ E id * ( id + id ) $ 
$ E’ T id * ( id + id ) $  
$ E’ T’ F id * ( id + id ) $  
$ E’ T’ F id id * ( id + id ) $ 
$ E’ T’ * ( id + id ) $ 
$ E’ T’ F * * ( id + id ) $ 
$ E’ T’ F ( id + id ) $ 
$ E’ T’ ) E ( ( id + id ) $ 
$ E’ T’ ) E  id + id ) $ 
$ E’ T’ ) E’ T  id + id ) $ 
$ E’ T’ ) E’ T’ F id + id ) $ 
$ E’ T’ ) E’ T’ id id + id ) $ 
$ E’ T’ ) E’ T’ + id ) $ 
$ E’ T’ ) E’ + id ) $ 
$ E’ T’ ) E’ T  + + id ) $ 
$ E’ T’ ) E’ T  id ) $ 
$ E’ T’ ) E’ T’ F id ) $ 
$ E’ T’ ) E’ T’ id id ) $ 
$ E’ T’ ) E’ T’ ) $ 
$ E’ T’ ) E’ ) $ 
$ E’ T’ ) ) $ 
$ E’ T’ $ 
$ E’ $ 
$ $ 
CORRECT 

Figure 1  Compiler Usage of Parsing Table 
after inputting id * ( id + id ) $ 

 
Figure 2 illustrates how a compiler can utilize the 

table to determine whether a mathematical expression 
is wrongly constructed. 

 
KeyError: ‘+’ 
$ E id * + id  
$ E’ T id * + id  
$ E’ T’ F id * + id  
$ E’ T’ id id * + id 
$ E’ T’ * + id 
$ E’ T’ F * * + id  
$ E’ T’ F + id 

Figure 2 – Compiler Usage of Parsing Table 
after inputting id * + id $ 

 
After analyzing simple mathematical examples, we 

can apply the same principles to more complex scena-
rios, extending their use to natural language processing, 
particularly English. 

Let’s examine a simplified representation of the 
English language using Backus-Naur Form (BNF). For 
example, the sentence "The cat sat on the mat." can be 
expressed in BNF as follows: 
<sentence> ::= <noun_phrase> <verb_phrase> 
<noun_phrase> ::= <determiner> <noun> 
<verb_phrase> ::= <verb> <prepositional_phrase> 
<prepositional_phrase> ::= <preposition> <noun_phrase> 
<determiner> ::= "the" 
<noun> ::= "cat" | "mat" 
<verb> ::= "sat" 
<preposition> ::= "on" 

First, the sentence would be divided into tokens: 
[“The”, “cat”, “sat”, “on”, “the”, “mat”]. 

Then the sentence would be divided into 
<noun_phrase> and <verb_phrase>: 

[“The”, “cat”, “sat”, “on”, “the”, “mat”]. 
Then the <noun_phrase> would be divided into 

<determiner> <noun> and <verb_phrase> would be 
divided into <verb> <prepositional_phrase>: 

[“The”, “cat”, “sat”, “on”, “the”, “mat”]. 
Then the <prepositional_phrase> would be divided 

into <preposition> <noun_phrase>: 
[“The”, “cat”, “sat”, “on”, “the”, “mat”]. 
Then the <noun_phrase> would be divided into 

<determiner> <noun>: 
[“The”, “cat”, “sat”, “on”, “the”, “mat”]. 
Then we convert everything into names as we can-

not divide them any further: 
[<determiner>, <noun>, <verb>, <preposition>, 

<determiner>, <noun>]. 
The tokens above do indeed follow the BNF struc-

ture which means that the sentence is correct.  
Now, let’s apply our knowledge with an actual 

example from a typical English test, as illustrated in 
Figure 3. 

 

 
Figure 3 – Easy example from an actual 

English test [9] 
 
The BNF of the exam sentence can be expressed as 

follows: 
<sentence> ::= <subject> <verb> <object> <complement> <adverb> 
<subject> ::= "I" 
<verb> ::= "think" 
<object> ::= <noun_phrase> 
<complement> ::= <copula> <verb_phrase> 
<copula> ::= "is" 
<adverb> ::= "now" 
<noun_phrase> ::= <determiner> <noun> 
<determiner> ::= "the" 
<noun> ::= "show" 
<verb_phrase> ::= <preposition> <to> <verb> 
<preposition> ::= "about" 
<to> ::= "to" 
<verb> ::= "start" 

 
Remember that as sentences become longer, you 

don’t need to create a complete BNF for each one as it 
will only waste your time during the exam. Instead, 
focus on areas where mistakes are likely to occur. 



 
THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL  

TASKS IN EXAMS 

 Молодь і ринок № 5–6 (237–238), 2025 
 

115

In sentence A we observe the phrase “about star-
ting” which directly contradicts to the BNF of the 
English language in this context. In the BNF of the 
exam sentence we can clearly see that <verb_phrase> 
consists of 3 parts, one of which is <to>, which is clear-
ly missing: 
<sentence> ::= <subject> <verb> <object> <complement> <adverb> 
<complement> ::= <copula> <verb_phrase> 
<verb_phrase> ::= <preposition> <to> <verb> 
<to> ::= "to" 

 
This discovery clearly indicates that the absence of 

the <to> component within the <verb_phrase> renders 
the sentence grammatically incorrect, highlighting a 
critical flaw in its structure. 

In sentence B we observe the phrase “I the show” 
which also directly contradicts to the BNF of the 
English language in this context. In the BNF of the 
exam sentence we can clearly see that <subject> is 
followed by <verb> and “the” is obviously not a verb: 
<sentence> ::= <subject> <verb> <object> <complement> <adverb> 
<subject> ::= "I" 
<verb> ::= "think" 

The lack of a suitable verb in the phrase leads to the 
conclusion that the entire sentence is incorrect and 
ungrammatical, underscoring a crucial flaw in its struc-
tural composition. 

In sentence C, we find no grammatical errors or 
structural inconsistencies. Upon careful analysis, the 
sentence adheres to the syntactical rules as outlined in 
the BNF: 
<sentence> ::= <subject> <verb> <object> <complement> <adverb> 
<sentence> ::= "I" "think" "the" "show" "is" "about" "to" "start" 

 
It may seem challenging and impractical to apply 

this approach during actual exams, but as sentences 
become more complex, being able to set aside their 
meanings and concentrate solely on syntax – much like 
compilers do – can significantly enhance your perfor-
mance. 

In fact, any English grammar rule can be expressed 
using BNF notation. Figure 4 presents the rules for 
constructing conditional sentences. 

 

 
 Condition Result 

 
 

Zero 

If + Present Simple 
 

If you take the street on the right 
 

Present Simple   
 

It’s quicker  

 
First 

If + Present Simple 
 

If I finish work early  
 

Will/won’t + V1 
 

I’ll go to the shop  

 
Second 

If + Past Simple  
 

If I wasn’t sick  
 

Would/wouldn’t + V1  
 

I’d go to the party  

 
Third 

If + Past Perfect  
 

If I’d left earlier  
 

Would/wouldn’t have + V3 
 

I wouldn’t have been late  

 
Figure 4 – Conditional sentences rules [10] 

 
The following code represents the conditional sen-

tence rules from Figure 4, but in BNF notation: 
<conditional_sentence> ::= <zero_conditional> | <first_conditional> 
| <second_conditional> | <third_conditional> 
 
<zero_conditional> ::= "if" <present_simple> "," <present_simple> 
<first_conditional> ::= "if" <present_simple> "," <will_clause> 
<second_conditional> ::= "if" <past_simple> "," <would_clause> 
<third_conditional> ::= "if" <past_perfect> "," <would_have_clause> 
 
<present_simple> ::= <subject> <verb_present> 
<past_simple> ::= <subject> <verb_past> 
<past_perfect> ::= <subject> "had" <verb_past_participle> 
<will_clause> ::= <subject> "will" <verb_base_form> 
<would_clause> ::= <subject> "would" <verb_base_form> 
<would_have_clause> ::= <subject> "would have" 
<verb_past_participle> 
 

<subject> ::= "I" | "you" | "he" | "she" | "it" | "we" | "they" 
<verb_present> ::= "do" | "is" | "has" 
<verb_past> ::= "did" | "was" | "had" 
<verb_past_participle> ::= "done" | "been" 
<verb_base_form> ::= "do" | "be" 
 

Only after performing syntax analysis and elimi-
nating numerous incorrect options can you proceed to 
semantic analysis. This step allows you to understand 
the underlying logic [11] and determine why a specific 
answer is correct, particularly when syntax analysis 
alone is insufficient. 

In summary, analyzing sentences in an exam con-
text involves three essential stages: lexical analysis, 
syntax analysis, and semantic analysis. 



 
THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL  

TASKS IN EXAMS 

Молодь і ринок № 5–6 (237–238), 2025 
 

116

1. Lexical analysis begins with identifying indi-
vidual words and their classifications to ensure they 
conform to expected patterns [12]. 

2. Syntax analysis follows, where the structure of 
the sentence is examined to verify grammatical correct-
ness and adherence to language rules [13]. 

3. Semantic analysis concludes the process by 
assessing the meaning and context, confirming that the 
sentence logically conveys the intended message [14]. 

By systematically applying these analysis stages, 
you can effectively evaluate sentence correctness, iden-
tify errors, and enhance your overall understanding of 
language in an exam setting [15]. 

Conclusion. Adopting a mindset akin to that of a 
compiler can significantly enhance one’s problem-
solving abilities. By approaching tasks stage by stage – 
beginning with lexical analysis, then syntax, and finally 
semantic analysis – individuals can minimize confusion 
and streamline their thought processes. 

By following this systematic approach, students can 
clarify complex tasks, foster a deeper understanding of 
language, and ultimately improve their performance in 
English exams and beyond. Thinking like a compiler 
not only enhances comprehension but also equips indi-
viduals with valuable strategies for effective problem-
solving. 

This approach is especially beneficial for C2 
grammar exams, where students may encounter unfa-
miliar words and even if they do not fully understand 
what the sentence means, they can still analyze syntax 
to derive the correct answer. Although this method may 
seem challenging at first, experience reveals that it 
becomes much easier over time, allowing students to 
navigate English exams with greater confidence and 
proficiency. 

Moreover, this approach fosters a more comprehen-
sive understanding of linguistic concepts, enabling 
students to connect theoretical principles with practical 
application. By thinking like a compiler, they gain 
insights into the systematic nature of language, 
empowering them to articulate their thoughts more 
clearly and effectively. 

 
REFERENCES  
1. A Two-Stage BNF Specification of Natural Language. 

Available at: https://www.tandfonline.com/doi/pdf/10.1080/0 
1969727208542912 (Accessed 17 Feb. 2025).  

2. Backus-Naur form (BNF). Available at: https://www. 
researchgate.net/publication/262254296_Backus-Naur_form_BNF 
(Accessed 17 Feb. 2025).  

3. What is language? Part IV: BNF notation. Syntax dia-
grams. Available at: https://rafalhiszpanski.pl/en/2023/02/what-
is-language-part-four/ (Accessed 17 Feb. 2025).  

4. The restriction language for computer grammars of 
natural language. Available at: https://dl.acm.org/doi/10.1145/ 
360881.360910 (Accessed 17 Feb. 2025).  

5. A Syntax-Based Analysis of Predication: Linguistic 
Structures Available at: https://journal.aspirasi.or.id/index.php/ 
Fonologi/article/download/195/220/879 (Accessed 17 Feb. 2025).  

6. A Review of the Studies on the Frequent Administra-
tions of English Tests. Available at: https://www.research 
gate.net/publication/276248084_A_Review_of_the_Studies_on_t
he_Frequent_Administrations_of_English_Tests (Accessed 17 
Feb. 2025).  

7. The language of languages. Available at: https://matt. 
might.net/articles/grammars-bnf-ebnf/ (Accessed 17 Feb. 2025).  

8. BNF Notation in Compiler Design. Available at: 
https://www.geeksforgeeks.org/bnf-notation-in-compiler-design/ 
(Accessed 17 Feb. 2025).  

9. Level Test Upper Advanced C2. Available at: 
https://www.englishtag.com/tests_with_answers/level_test_upper
_advanced_C2.asp#google_vignette (Accessed 17 Feb. 2025).  

10. GRAMMAR: Conditional Sentences. Available at: 
https://www.languageunlimited.org/conditionals/ (Accessed 18 
Feb. 2025).  

11. The Importance of Logic and Critical Thinking. 
Available at: https://www.wired.com/2011/03/the-importance-of-
logic-critical-thinking/ (Accessed 16 Feb. 2025).  

12. Introduction to Lexical Analysis: What it is and How 
it Works. Available at: https://medium.com/@mitchhuang777/ 
introduction-to-lexical-analysis-what-it-is-and-how-it-works-
b25c52113405 (Accessed 18 Feb. 2025).  

13. Introduction to Syntax Analysis. Available at: https:// 
www.cs.mtsu.edu/~zdong/3210/OldSlides/SyntaxAnalyzerIntroduc
tion.pdf (Accessed 17 Feb. 2025).  

14. What is semantics? Available at: https://www.lenovo. 
com/us/en/glossary/what-is-semantics/#:~:text=Syntax%20refers% 
20to%20the%20grammatical,they%20relate%20to%20each%20ot
her. (Accessed 16 Feb. 2025).  

15. Language Understanding and Knowledge of Meaning. 
Available at: https://www.researchgate.net/publication/47697391_ 
Language_Understanding_and_Knowledge_of_Meaning (Acces-
sed 16 Feb. 2025).  

 
Стаття надійшла до редакції 21.02.2025 

 

 

 
“Будь-яке навчання людини, є не що інше, як мистецтво сприяти прагненню природи до свого 

власного розвитку”. 
 

Йоганн Генріх  Песталоцці 
видатний швейцарський педагог-новатор 

 


