THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL
TASKS IN EXAMS

UDC 004.42:811.111
DOI: https://doi.org/10.24919/2308-4634.2025.332796

Tetiana Cherniuk, Senior Lecturer of the Foreign Languages Department,
Petro Mohyla Black Sea National University, Mykolaiv, Ukraine

ORCID: https://orcid.org/0009-0005-1991-2303

Bohdan Somriakov, Student of the Faculty of Computer Science,

Petro Mohyla Black Sea National University, Mykolaiv, Ukraine

ORCID: https://orcid.org/0009-0003-7045-8586

THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL
TASKS IN EXAMS

Exams can be a source of stress for many students, particularly when it comes to solving grammatical tasks. One of the
main difficulties arises from the natural tendency to approach these tasks in a disorganized way, attempting to juggle multiple
mental processes at once. Students often find themselves simultaneously analyzing grammar rules, interpreting the meaning of
sentences, considering the broader context, and even contemplating the emotional tone of the passage. This multitasking can be
overwhelming, causing errors and incomplete answers as the pressure mounts.

However, there is an alternative way of thinking that could significantly improve a student's ability to handle such tasks:
thinking like a computer. In the world of programming, computers process languages using a systematic approach, following
precise rules to break down complex code into smaller, more manageable parts. Much like how a compiler processes
programming languages — by separating syntax, semantics, and structure into clear steps — students can apply a similar strategy
to language exams. By focusing on one aspect at a time and methodically working through the task, they can reduce mental
overload and improve their accuracy.

This article draws an analogy between the way computers handle programming languages and how students can benefit
from adopting a “compiler mindset” when tackling English exams. Through this lens, students will learn how to better organize
their thought process, break down complex tasks, and avoid the common pitfalls that arise from trying to process too many
elements at once. By approaching grammatical tasks in a structured, methodical way, students can increase both their
confidence and performance under exam conditions.

This article researches the similarities between the functioning of compound languages and the structure of the English
language and identifies how this knowledge can be applied to effective question answering in an English language exam. The
findings allow for a better understanding of the patterns of language construction and their use in different contexts. This, in
turn, contributes to the improvement of language competence and the successful passing of language tests.

Keywords: grammar; English exams; NLP; BNF, language.

Fig. 4. Tabl. 2. Ref. 15.

TersHa UepHIOK, crmapuiuil 6ukiaday Kageopu iHO3eMHUX MOS8

Yopromopcobkoeo nayionanvhozo yHigepcumemy imeni Ilempa Moeunu, Mukonais, Ykpaina
ORCID: https://orcid.org/0009-0005-1991-2303

Bornan CoMpsiKoB, crmydenm @axyibmenty Komn TOMepHux HayK

YHopHomopcvkozo nayionanvHo2o yHigepcumemy imeni Ilempa Moeunu, Muxonais, Ykpaina
ORCID: https://orcid.org/0009-0003-7045-8586

MUCJIITA AK KOMILIATOP: CACTEMHMAM MIIXII 10 BUPIIIEHHSA TPAMATHYHUX
3ABJAHDB HA ICIIUTAX

Ienumu moorcymv Oymu Ooicepenom cmpecy 0ns 6a2amvox CmMyoenmis, 0COOIUBO KOAU UOembCs Npo SUpIleHH:
epamamuynux 3a60anb. OCHOGHI MPYOHOW BUHUKAIOMb Yepe3 NpUpoOHy MEHOeHYilo RnioXooumu 00 yux 3a60aHb
HeopeaHi306an0, HAMAAIOWUCH JICOH2TIOBAMU KITbKOMA PO3YMOBUMU npoyecamu ooHouacHo. Crmydenmu yacmo 800HOUAC
ananizyioms 2pamamuyti npasund, IHMepnpemyloms 3HA4eHHs pedeHb, pOo32A0aIomb WUPWULL KOHmeKcm i Hagimb
0bmiprogylome emoyiiinuii mon ypusky. Taka 6azamozadaunicmv modice OYmMu HENOCUNLHOIO, CNPUMUHSIONU NOMUIKU MA
HenosHi 8iON08ioi, OCKINbKU MUCK 3POCAE.

Oonax icHye anbmepHamueHuLl CNOCio MUCIEHHA, AKULL MOJCe 3HAYHO NOKpAWumu 30amHiCme YUHA CHPAGIAMUCA 3
MmaKumMu 3a60aHHAMU: MUCTEHHA AK Y Komn'tomepa. Y ceimi npocpamyéanns Komn'iomepu o06po6nsioms Mosu,
BUKOPUCTNOBYIOUU CUCEMHULL NIOXIO, OOMPUMYIOUUCL MOYHUX NPABUTL, W00 po30umu CKIAOHUL KOO HA MeHW, Oilbl Kepo8aHi
yacmunu. I[100ioHO 00 Moo, AK KOMRINAMOP 06pPOONAE MOBU NPOSPAMYSAHHS, DPO3OUIAIUU CUHMAKCUC, CEMAHMUKY Ma
CMPYKMypy HA 4imKi KPOKU, CHIYOeHMU MOJCYMb 3ACIMOCY8amu HOOIOHY cmpameziio 00 MOGHUX ICNUMI8. 30cepedcyrouucs Ha
0OHOMY acnekmi 3a paz i MemoOUHHO ONPaybOBYIOYU 3a60AHHS, BOHU MOJICYMb 3MEHWUMU PO3YMOBE NEPeBAHMAdICeHHs Ma
NIOBUYUMU CBOI0 MOYHICb.

YV yiti cmammi npoeodumvca ananoeis mixc mum, K KOMR I0Mepu NPayioms 3 MOBAMU NPOSPAMYBAHHA, I MUM, K
CMyOeHmuy MOXCYMb OMPUMAMU KOPUCb 6I0 NPULHAMMA “MUCTEHHA Komninamopa” npu nideomosyi 00 icnumie 3

© T. Cherniuk, B. Somriakov, 2025 111 Momnonp i punok Ne 5—6 (237-238), 2025

THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL
TASKS IN EXAMS

anenivicbkoi mosu. 11io yum Kymom 30py cmyoenmu Oi3HaiombCs, AK Kpauje op2anizyeamu ceiil npoyec MUcieHts, posoueami
CKNIAOHI 3a80anHA HA YACMUHU MA YHUKAMU NOWUPEHUX NOMUIOK, SKI BUHUKAIOMb NpU cnpobi obpobumu Haomo bazamo
enemenmig oonouacHo. 1lioxooauu 0o epamamuyHux 3a60aus y CIPYKMYPOSAHULL, MEMOOUUHULL CROCIO, CIYOEeHIMU MOXCYMb
nioBUWUMU CBOI0 BNEBHEHICHb MA NOKPAWUMU PEe3YTbMAMU 8 YMOBAX ICHUMY.

Knwowuoei cnosa: cpamamuxa; icnumu 3 aneniticokoi mogu; NLP; BNF,; moea.

tant to understand what happens behind the

scenes during the compilation process. The
compiler transforms the code into machine-readable
instructions through three distinct stages, each playing a
crucial role in this transformation:

Step 1: Lexical Analysis. The first step in the com-
pilation process is lexical analysis. When you save your
code in a. go file, the compiler’s lexical analyzer breaks
the code into individual tokens. These tokens are the
building blocks of the programming language, inclu-
ding keywords (e.g., const), identifiers (e.g., a), literals
(e.g., 9), and symbols (e.g., =).

Step 2: Syntax Analysis. The compiler’s parser takes
the tokens and checks if they form a valid program
according to the language’s syntax rules. This is where
the compiler ensures that your code is structured cor-
rectly, with proper nesting, brackets, and semicolons.

Step 3: Semantic Analysis. After parsing, the com-
piler performs semantic analysis, which involves
checking the meaning of the code. This is where the
compiler checks the types of variables, ensures that
operations are valid, and performs other semantic
checks.

When students tackle English exam questions, they
can benefit from a structured approach similar to the
way compilers process code. Just as a compiler goes
through three essential stages to transform code into
machine-readable instructions, students can apply a
three-step method to analyze and answer exam ques-
tions effectively.

Analysis of the latest relevant research and pub-
lications. Recent research and publications on the
application of Backus-Naur Form (BNF) in English
language processing and natural language processing
(NLP), as well as the tools utilized in the development
of English exams, underscore several key points:

- A Two-Stage BNF Specification of Natural Lan-
guage. This paper presents a method of using BNF to
specify natural language in such a way that a relatively
small grammar of English can express the major
grammatical constraints of the language and can be
refined without undue proliferation of the rules. The
results show that the departures of natural language
from a context-free language are of a very restricted
kind. The analysis obtained for sentences of the scien-
tific literature is relevant for information processing [1].

- Backus-Naur form (BNF). The article provides an
overview of Backus-Naur Form (BNF), a widely re-
cognized meta-language used to describe the syntax of
programming languages. It explains that BNF, named

I ntroduction. When writing code, it’s impor-

Momnons 1 puHOK Ne 5—6 (237-238), 2025

after its creators John W. Backus and Peter Naur, serves
as a formal way to specify which sequences of symbols
are considered syntactically valid within a program-
ming language. The article emphasizes that while BNF
effectively outlines the structural rules of a language, it
does not address the semantics, or the meanings, of
those valid sequences. It aims to discuss the fundamen-
tal concepts of BNF, examining how it functions as a
tool for defining the syntax of programming languages
and its importance in the realm of computer science [2].

- What is language? Part IV: BNF notation. Syntax
diagrams. The article is part of a series that examines
formal languages and their applications, specifically
focusing on Backus-Naur Form (BNF) notation and its
extensions. It addresses a gap in previous discussions
about context-free grammars by providing practical
examples of how BNF notation can be used to describe
the syntax of languages [3].

- The restriction language for computer grammars
of natural language. The paper introduces a program-
ming language specifically designed to effectively and
clearly express the restrictions applicable to natural
language grammar. This language is built on ten years
of experience from the N.Y.U. Linguistic String Pro-
ject, which has focused on parsing English sentences.
The language incorporates practical syntax and routines
that facilitate computerized natural language analysis,
and it is currently utilized in the implementation of the
Linguistic String Parser [4].

- A Syntax-Based Analysis of Predication: Linguis-
tic Structures. This article reviews a syntax-based ana-
lysis of predication in language, delving into its under-
lying linguistic structure. The research conducted
employs analytical methods sourced from literature to
comprehend sentence construction and the syntactic
relationships forming predication [5].

- A Review of the Studies on the Frequent Admi-
nistrations of English Tests. The aim of this paper is to
give a review of the studies which have been conducted
on the role of the frequent administrations of tests. This
includes studies on the effect of testing frequency on
students’ scores, anxiety, motivation, preparation, class
participation, long-term retention of the materials, and
the effect of the feedback which is given based on
students’ performance on these frequent tests. It also
gives a brief summary of different types of test-anxious
students and models of test anxiety [6].

- The language of languages. The article discusses
the foundational role of grammars in shaping various
types of languages used in computing, including pro-
gramming languages, query languages, and markup

112

THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL
TASKS IN EXAMS

languages. It emphasizes that grammars determine the
structure of these languages and introduces common
notations for representing grammars, specifically
Backus-Naur Form (BNF), Extended Backus-Naur
Form (EBNF), and regular extensions to BNF [7].

The purpose of the research is to examine the simi-
larities between the functioning of compiled languages
and the structure of the English language, as well as to
identify how these insights can be applied to effectively

3. A terminal symbol may be a literal like (“$” or
“function”) or a category of literals (like integer).

4. Simply juxtaposing expressions indicates se-
quencing.

A vertical bar | indicates choice.

Let’s examine the following table, which provides
examples of mathematical expressions and indicates
whether they are correct as seen in table 1.

solve English exam questions.

Results of the research. BNF stands for Backus
Naur Form notation. It is a formal method for descri-

bing the syntax of programming language which is
understood as Backus Naur Formas introduced by John
Bakus and Peter Naur in 1960.

For human consumption, a proper notation for
encoding grammars intended and called Backus Naur
Form (BNF). Different languages have different de-
scription and rules but the general structure of BNF is

given below.
<name> ::= <expansion>

BNF (Backus-Naur Form) Rules Overview [8]:

1. Every name in Backus-Naur form is surrounded
by angle brackets, <>, whether it appears on the left- or
right-hand side of the rule.

2. An expansion is an expression containing termi-
nal symbols and non-terminal symbols, joined together
by sequencing and selection.

Ne Expression Correctness
1 id$ Correct
2 id+id+id$ Correct
3 id+$ Wrong
4 id+(id+id)$ Correct
5 id+(id+id$ Wrong
6 id*(id+id)$ Correct
7 id(id+id$ Wrong
Table 1 — Examples of expressions and their
correctness

The BNF for the mathematical expressions dis-
played in table 1 is structured as shown below:

<Expression> ::= <Term> | <Expression>"+" <Term>
<Term> ::= <Factor> | <Term>"*" <Factor>
<Factor> ::="id" | "(" <Expression>")"

Using the BNF, we can construct a table that serves
as a foundation for the compiler’s parsing process as
seen in table 2.

Input Symbol
Non-terminal
id + * () $
E E—TE' E—TE'
E' E'— +TE' E'—¢ E'—e¢
T T— FT' T— FT'
T T'—e¢ T'— *FT' T'—e T'—e
F F—id F—(E)

Table 2 — Parsing table based on the BNF grammar

Table 2 is a parsing table derived from the BNF
grammar to assist in parsing input strings. It consists of:

1. Non-terminals: Rows for non-terminal symbols
(E,E, T, T, F).

2. Input symbols: Columns for terminal symbols
(id, +, *,(,), and $).

3. Production rules: Cell values indicate applicable
production rules for each non-terminal and input sym-
bol.

For instance:

113

If the input symbol is id and the parser expects E,
the rule E — TE' is applied.

If the input is + and the parser expects E/, the rule E'
— +TE' is used.

This table enables the parser to determine which
production rules to apply, facilitating the construction
of a predictive parser.

Figure 1 illustrates how a compiler can utilize the
table to determine whether a mathematical expression
is correctly constructed.

Momons 1 puaOK Ne 5—6 (237-238), 2025

THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL
TASKS IN EXAMS

SEid*(id+id)$
SETid* (id+id)$
SETFid*(id+id)$
SETFidid* (id+id)$
SET *(id+id)$
SETF**(id+id)$
SETF(id+id)$
SET)E((id+id)$
SET)Eid+id)$
SET)ETid+id)$
SET)ET Fid+id)$
SET)ETidid+id)$
SET)ET+id)$
SET)E+id)$
SET)ET ++id)$
SET)ETid)$
SET)ETFId)S$
SET)ETidid)$
SET)ET)S
SET)E)S
SET))S

SETS

SE'S

$$

CORRECT

Figure 1 — Compiler Usage of Parsing Table
after inputting id * (id+id) $

Figure 2 illustrates how a compiler can utilize the
table to determine whether a mathematical expression
is wrongly constructed.

KeyError: ‘+
SEid*+id
SE'Tid*+id
SETFid*+id
SETidid*+id
SET *+id
SETF**+id
SE'T F+id
Figure 2 — Compiler Usage of Parsing Table
after inputting id * +id $

After analyzing simple mathematical examples, we
can apply the same principles to more complex scena-
rios, extending their use to natural language processing,
particularly English.

Let’s examine a simplified representation of the
English language using Backus-Naur Form (BNF). For
example, the sentence "The cat sat on the mat." can be

expressed in BNF as follows:

<sentence> ::= <noun_phrase> <verb_phrase>
<noun_phrase> ::= <determiner> <noun>

<verb_phrase> ::= <verb> <prepositional_phrase>
<prepositional_phrase> ::= <preposition> <noun_phrase>
<determiner> ::= "the"

<noun>::="cat" | "mat"

<verb> ::="sat"

<preposition> ::="on"

Mozozp i punok Ne 5-6 (237-238), 2025

First, the sentence would be divided into tokens:
[“The”, “cat”, “sat”, “on”, “the”, “mat’].

Then the sentence would be
<noun_phrase> and <verb_phrase>:

[“The”, “cat”, “sat”, “on”, “the”, “mat’”].

Then the <noun phrase> would be divided into

divided into

[£The”, “cat”, “‘sat”, “on”, “‘the”, “mat”].

Then the <preposiﬁonal _phrase> would be divided

[£The”, *cat”, “sat”, “on”, “the”, “mat”].
Then the <noun_phrase> would be divided into
<determiner> <noun>:

[£The”, “cat”, “‘sat”, “on”, “the”, “mat”].

Then we convert everything into names as we can-
not divide them any further:

The tokens above do indeed follow the BNF struc-
ture which means that the sentence is correct.

Now, let’s apply our knowledge with an actual
example from a typical English test, as illustrated in
Figure 3.

A. Choose the correct option

O A. I think the show is about start now
O B. | the show is about to start now
O C. | think the show is about to start now

Figure 3 — Easy example from an actual
English test [9]

The BNF of the exam sentence can be expressed as
follows:
<sentence> ::= <subject> <verb> <object> <complement> <adverb>
<subject> ::="I"
<verb> ::= "think"
<object> ::= <noun_phrase>
<complement> ::= <copula> <verb_phrase>
<copula> ::="is"
<adverb> ::="now"
<noun_phrase> ::= <determiner> <noun>
<determiner> ::= "the"
<noun> ::="show"
<verb_phrase> ::= <preposition> <to> <verb>
<preposition> ::="about"
<to> ::="to"
<verb> ::="start"

Remember that as sentences become longer, you
don’t need to create a complete BNF for each one as it
will only waste your time during the exam. Instead,
focus on areas where mistakes are likely to occur.

114

THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL
TASKS IN EXAMS

In sentence A we observe the phrase “about star-
ting” which directly contradicts to the BNF of the
English language in this context. In the BNF of the
exam sentence we can clearly see that <verb phrase>
consists of 3 parts, one of which is <to>, which is clear-
ly missing:
<sentence> ::= <subject> <verb> <object> <complement> <adverb>
<complement> ::= <copula> <verb_phrase>
<verb_phrase> ::= <preposition> <to> <verb>
<to>:="to"

This discovery clearly indicates that the absence of
the <to> component within the <verb_phrase> renders
the sentence grammatically incorrect, highlighting a
critical flaw in its structure.

In sentence B we observe the phrase “I the show”
which also directly contradicts to the BNF of the
English language in this context. In the BNF of the
exam sentence we can clearly see that <subject> is
followed by <verb> and “the” is obviously not a verb:
<sentence> ::= <subject> <verb> <object> <complement> <adverb>
<subject> :="I"
<verb> ::= "think"

The lack of a suitable verb in the phrase leads to the
conclusion that the entire sentence is incorrect and
ungrammatical, underscoring a crucial flaw in its struc-
tural composition.

In sentence C, we find no grammatical errors or
structural inconsistencies. Upon careful analysis, the
sentence adheres to the syntactical rules as outlined in
the BNF:

<sentence> ::= <subject> <verb> <object> <complement> <adverb>
<sentence> ::="|" "think" "the" "show" "is" "about" "to" "start"

It may seem challenging and impractical to apply
this approach during actual exams, but as sentences
become more complex, being able to set aside their
meanings and concentrate solely on syntax — much like
compilers do — can significantly enhance your perfor-
mance.

In fact, any English grammar rule can be expressed
using BNF notation. Figure 4 presents the rules for
constructing conditional sentences.

Condition Result
If + Present Simple Present Simple
Zero If you take the street on the right It’s quicker
If + Present Simple Will/won’t + V1
First
If T finish work early I'll go to the shop
If + Past Simple Would/wouldn’t + V1
Second
If T wasn’t sick I’d go to the party
If + Past Perfect ‘Would/wouldn’t have + V3
Third
IfI’d left earlier I wouldn’t have been late

Figure 4 — Conditional sentences rules [10]

The following code represents the conditional sen-
tence rules from Figure 4, but in BNF notation:
<conditional_sentence> ::= <zero_conditional> | <first_conditional>
| <second_conditional> | <third_conditional>

<zero_conditional> ::="if" <present_simple>"," <present_simple>

<first_conditional> ::= "if" <present_simple>"," <will_clause>

<second_conditional> ::= "if" <past_simple>"," <would_clause>

<third_conditional> ::= "if" <past_perfect>"," <would_have_clause>

<present_simple> ::= <subject> <verb_present>
<past_simple> ::= <subject> <verb_past>

<past_perfect> ::= <subject> "had" <verb_past_participle>
<will_clause> ::= <subject> "will" <verb_base_form>
<would_clause> ::= <subject> "would" <verb_base_form>
<would_have_clause> ::= <subject> "would have"
<verb_past_participle>

115

<subject>::="I" | "you" | "he" | "she" | "it" | "we" | "they"
<verb_present> ::="do" | "is" | "has"

<verb_past> ::="did" | "was" | "had"
<verb_past_participle> ::= "done" | "been"
<verb_base_form> ::="do" | "be"

Only after performing syntax analysis and elimi-
nating numerous incorrect options can you proceed to
semantic analysis. This step allows you to understand
the underlying logic [11] and determine why a specific
answer is correct, particularly when syntax analysis
alone is insufficient.

In summary, analyzing sentences in an exam con-
text involves three essential stages: lexical analysis,
syntax analysis, and semantic analysis.

Momons 1 puaOK Ne 5—6 (237-238), 2025

THINKING LIKE A COMPILER: A SYSTEMATIC APPROACH TO SOLVING GRAMMATICAL
TASKS IN EXAMS

1. Lexical analysis begins with identifying indi-
vidual words and their classifications to ensure they
conform to expected patterns [12].

2. Syntax analysis follows, where the structure of
the sentence is examined to verify grammatical correct-
ness and adherence to language rules [13].

3. Semantic analysis concludes the process by
assessing the meaning and context, confirming that the
sentence logically conveys the intended message [14].

By systematically applying these analysis stages,
you can effectively evaluate sentence correctness, iden-
tify errors, and enhance your overall understanding of
language in an exam setting [15].

Conclusion. Adopting a mindset akin to that of a
compiler can significantly enhance one’s problem-
solving abilities. By approaching tasks stage by stage —
beginning with lexical analysis, then syntax, and finally
semantic analysis — individuals can minimize confusion
and streamline their thought processes.

By following this systematic approach, students can
clarify complex tasks, foster a deeper understanding of
language, and ultimately improve their performance in
English exams and beyond. Thinking like a compiler
not only enhances comprehension but also equips indi-
viduals with valuable strategies for effective problem-
solving.

This approach is especially beneficial for C2
grammar exams, where students may encounter unfa-
miliar words and even if they do not fully understand
what the sentence means, they can still analyze syntax
to derive the correct answer. Although this method may
seem challenging at first, experience reveals that it
becomes much easier over time, allowing students to
navigate English exams with greater confidence and
proficiency.

Moreover, this approach fosters a more comprehen-
sive understanding of linguistic concepts, enabling
students to connect theoretical principles with practical
application. By thinking like a compiler, they gain
insights into the systematic nature of language,
empowering them to articulate their thoughts more
clearly and effectively.

REFERENCES

1. A Two-Stage BNF Specification of Natural Language.
Available at: https://www.tandfonline.com/doi/pdf/10.1080/0
1969727208542912 (Accessed 17 Feb. 2025).

2. Backus-Naur form (BNF). Available at: https:/www.
researchgate.net/publication/262254296 Backus-Naur_form BNF
(Accessed 17 Feb. 2025).

3. What is language? Part IV: BNF notation. Syntax dia-
grams. Available at: https:/rafalhiszpanski.pl/en/2023/02/what-
is-language-part-four/ (Accessed 17 Feb. 2025).

4. The restriction language for computer grammars of
natural language. Available at: https://dl.acm.org/doi/10.1145/
360881.360910 (Accessed 17 Feb. 2025).

5. A Syntax-Based Analysis of Predication: Linguistic
Structures Available at: https:/journal.aspirasi.or.id/index.php/
Fonologi/article/download/195/220/879 (Accessed 17 Feb. 2025).

6. A Review of the Studies on the Frequent Administra-
tions of English Tests. Available at: https://www.research
gate.net/publication/276248084 A Review of the Studies on t
he Frequent Administrations of English Tests (Accessed 17
Feb. 2025).

7. The language of languages. Available at: https:/matt.
might.net/articles/grammars-bnf-ebnf/ (Accessed 17 Feb. 2025).

8. BNF Notation in Compiler Design. Available at:
https://www.geeksforgeeks.org/bnf-notation-in-compiler-design/
(Accessed 17 Feb. 2025).

9.Level Test Upper Advanced C2. Available at:
https://www.englishtag.com/tests with answers/level test upper
_advanced C2.asp#google vignette (Accessed 17 Feb. 2025).

10. GRAMMAR: Conditional Sentences. Available at:
https://www.languageunlimited.org/conditionals/ (Accessed 18
Feb. 2025).

11. The Importance of Logic and Critical Thinking.
Available at: https:/www.wired.com/2011/03/the-importance-of-
logic-critical-thinking/ (Accessed 16 Feb. 2025).

12. Introduction to Lexical Analysis: What it is and How
it Works. Available at: https://medium.com/(@mitchhuang777/
introduction-to-lexical-analysis-what-it-is-and-how-it-works-
b25¢52113405 (Accessed 18 Feb. 2025).

13. Introduction to Syntax Analysis. Available at: https:/
www.cs.mtsu.edu/~zdong/3210/0l1dSlides/Syntax AnalyzerIntroduc
tion.pdf (Accessed 17 Feb. 2025).

14. What is semantics? Available at: https:/www.lenovo.
com/us/en/glossary/what-is-semantics/#:~:text=Syntax%s20refers%
20t0%20the%20grammatical they%o20relate%620t0%20each%:200t
her. (Accessed 16 Feb. 2025).

15. Language Understanding and Knowledge of Meaning.
Available at: https://www.researchgate net/publication/47697391
Language Understanding and Knowledge of Meaning (Acces-
sed 16 Feb. 2025).

Crarts Hagidnnia 1o peakmii 21.02.2025

F TR T LOCR O TILZDIROFTI HOCR (O TILOR S

“Byov-siKe Hasuanns AOOUHL, € He WO THULe, SIK MUCTEUMB0 CNPUSMU NPAZHEHHIO TPUPOOU 00 8020

8AACHO20 PO3BUMKY .

Hozann Tenpix Jlecmarouui
eudamuuil weeiuapcoKuii nedazoe-Hoeamop

O TOZOICR T LOCR O TR T HOCR (O TILOR S

Momnons i punok Ne 5—6 (237-238), 2025

116

